Link Search Menu Expand Document

Getting Started with RAPIDS and Alluxio

The RAPIDS plugin can remarkably accelerate the computing part of a SQL query by leveraging GPUs, but it’s hard to accelerate the data reading process when the data is in a cloud filesystem because of network overhead.

Alluxio is an open source data orchestration platform that brings your data closer to compute across clusters, regions, clouds, and countries for reducing the network overhead. Compute applications talking to Alluxio can transparently cache frequently accessed data from multiple sources, especially from remote locations.

This guide will go through how to set up the RAPIDS Accelerator for Apache Spark with Alluxio in an on-premise cluster.

Prerequisites

This guide assumes the user has successfully setup and run the RAPIDS Accelerator in an on-premise cluster according to this doc.

This guide will go through deployment of Alluxio in a Yarn cluster with 2 NodeManagers and 1 ResourceManager, It will describe how to configure an S3 compatible filesystem as Alluxio’s underlying storage system.

We may want to put the Alluxio workers on the NodeManagers so they are on the same nodes as the Spark tasks will run. The Alluxio master can go anywhere, we pick ResourceManager for convenience.

Let’s assume the hostnames are:

RM_hostname
NM_hostname_1
NM_hostname_2

Alluxio setup

  1. Prerequisites

    • Download Alluxio binary file

      Download the latest Alluxio binary file (2.4.1-1) alluxio-${LATEST}-bin.tar.gz from this site.

    • Copy alluxio-${LATEST}-bin.tar.gz to NodeManagers and ResourceManager

    • Extract alluxio-${LATEST}-bin.tar.gz to the directory specified by ALLUXIO_HOME in the NodeManagers and ResourceManager

       # Let's assume we extract alluxio to /opt
       mkdir -p /opt
       tar xvf alluxio-${LATEST}-bin.tar.gz -C /opt
       export ALLUXIO_HOME=/opt/alluxio-${LATEST}
      

    For SSH login wihtout password and Alluxio ports problem, please refer to this site.

  2. Configure alluxio

    • Alluxio master configuration

      On the master node, create ${ALLUXIO_HOME}/conf/alluxio-site.properties configuration file from the template.

       cp ${ALLUXIO_HOME}/conf/alluxio-site.properties.template ${ALLUXIO_HOME}/conf/alluxio-site.properties
      

      Add the recommended configuration below to ${ALLUXIO_HOME}/conf/alluxio-site.properties .

       # set the hostname of the single master node
       alluxio.master.hostname=RM_hostname
      
       ########################### worker properties  ##############################
       # The maximum number of storage tiers in Alluxio. Currently, Alluxio supports 1,
       # 2, or 3 tiers.
       alluxio.worker.tieredstore.levels=1
      
       # The alias of top storage tier 0. Currently, there are 3 aliases, MEM, SSD, and HDD.
       alluxio.worker.tieredstore.level0.alias=SSD
      
       # The paths of storage directories in top storage tier 0, delimited by comma.
       # It is suggested to have one storage directory per hardware device for the
       # SSD and HDD tiers. You need to create YOUR_CACHE_DIR first,
       # For example,
       #       export YOUR_CACHE_DIR=/opt/alluxio/cache
       #       mkdir -p $YOUR_CACHE_DIR
       alluxio.worker.tieredstore.level0.dirs.path=/YOUR_CACHE_DIR
      
       # The quotas for all storage directories in top storage tier 0
       # For example, set the quota to 100G.
       alluxio.worker.tieredstore.level0.dirs.quota=100G
      
       # The path to the domain socket. Short-circuit reads make use of a UNIX domain
       # socket when this is set (non-empty). This is a special path in the file system
       # that allows the client and the AlluxioWorker to communicate. You will need to
       # set a path to this socket. The AlluxioWorker needs to be able to create the
       # path. If alluxio.worker.data.server.domain.socket.as.uuid is set, the path
       # should be the home directory for the domain socket. The full path for the domain
       # socket with be {path}/{uuid}.
       # For example,
       #      export YOUR_DOMAIN_SOCKET_PATH=/opt/alluxio/domain_socket
       #      mkdir -p YOUR_DOMAIN_SOCKET_PATH
       alluxio.worker.data.server.domain.socket.address=/YOUR_DOMAIN_SOCKET_PATH
       alluxio.worker.data.server.domain.socket.as.uuid=true
      
       # Configure async cache manager
       # When large amounts of data are expected to be asynchronously cached concurrently,
       # it may be helpful to increase below async cache configuration to handle a higher
       # workload.
      
       # The number of asynchronous threads used to finish reading partial blocks.
       alluxio.worker.network.async.cache.manager.threads.max=64
      
       # The maximum number of outstanding async caching requests to cache blocks in each
       # data server.
       alluxio.worker.network.async.cache.manager.queue.max=2000
       ############################################################################
      
       ########################### Client properties ##############################
       # When short circuit and domain socket both enabled, prefer to use short circuit.
       alluxio.user.short.circuit.preferred=true
       ############################################################################
      
       # Running Alluxio locally with S3
       # Optionally, to reduce data latency or visit resources which are separated in
       # different AWS regions, specify a regional endpoint to make AWS requests.
       # An endpoint is a URL that is the entry point for a web service.
       #
       # For example, s3.cn-north-1.amazonaws.com.cn is an entry point for the Amazon S3
       # service in beijing region.
       alluxio.underfs.s3.endpoint=<endpoint_url>
      
       # Optionally, specify to make all S3 requests path style
       alluxio.underfs.s3.disable.dns.buckets=true
      

      For more explanations of each configuration, please refer to Alluxio Configuration and Amazon AWS S3.

      Note, when preparing to mount S3 compatible file system to the root of Alluxio namespace, the user needs to add below AWS credentials configuration to ${ALLUXIO_HOME}/conf/alluxio-site.properties in Alluxio master node.

       alluxio.master.mount.table.root.ufs=s3a://<S3_BUCKET>/<S3_DIRECTORY>
       alluxio.master.mount.table.root.option.aws.accessKeyId=<AWS_ACCESS_KEY_ID>
       alluxio.master.mount.table.root.option.aws.secretKey=<AWS_SECRET_ACCESS_KEY>
      

      Instead, this guide demonstrates how to mount the S3 compatible file system with AWS credentials to any path of Alluxio namespace, and please refer to RAPIDS Configuration. For more explanations of AWS S3 credentials, please refer to Amazon AWS S3 Credentials setup.

      Note, this guide demonstrates how to deploy Alluxio cluster in a insecure way, for the Alluxio security, please refer to this site

      • Add Alluxio worker hostnames into ${ALLUXIO_HOME}/conf/workers

         NM_hostname_1
         NM_hostname_2
        
      • Copy configuration from Alluxio master to Alluxio workers

         ${ALLUXIO_HOME}/bin/alluxio copyDir ${ALLUXIO_HOME}/conf
        

        This command will copy the conf/ directory to all the workers specified in the conf/workers file. Once this command succeeds, all the Alluxio nodes will be correctly configured.

    • Alluxio worker configuration

      After copying configuration to every Alluxio worker from Alluxio master, User needs to add below extra configuration for each Alluxio worker.

       # the hostname of Alluxio worker
       alluxio.worker.hostname=NM_hostname_X
       # The hostname to use for an Alluxio client
       alluxio.user.hostname=NM_hostname_X
      

      Note that Alluxio can manage other storage media (e.g. MEM, HDD) in addition to SSD, so local data access speed may vary depending on the local storage media. To learn more about this topic, please refer to the tiered storage document.

  3. Mount an existing data storage to Alluxio

    • Mount S3 bucket

       ${ALLUXIO_HOME}/bin/alluxio fs mount \
          --option aws.accessKeyId=<AWS_ACCESS_KEY_ID> \
          --option aws.secretKey=<AWS_SECRET_KEY_ID> \
          alluxio://RM_hostname:19998/s3 s3a://<S3_BUCKET>/<S3_DIRECTORY>
      
    • Mount Azure directory

       ${ALLUXIO_HOME}/bin/alluxio fs mount \
       --option fs.azure.account.key.<AZURE_ACCOUNT>.blob.core.windows.net=<AZURE_ACCESS_KEY> \
       alluxio://master:port/azure wasb://<AZURE_CONTAINER>@<AZURE_ACCOUNT>.blob.core.windows.net/<AZURE_DIRECTORY>/
      

    For other filesystems, please refer to this site.

  4. Start Alluxio cluster

    • Format Alluxio

      Before Alluxio can be started for the first time, the journal must be formatted. Formatting the journal will delete all metadata from Alluxio. However, the data in under storage will be untouched.

      Format the journal for the Alluxio master node with the following command:

       ${ALLUXIO_HOME}/bin/alluxio formatMasters
      
    • Launch Alluxio

      On the master node, start the Alluxio cluster with the following command:

       ${ALLUXIO_HOME}/bin/alluxio-start.sh all
      
    • Verify Alluxio

      To verify that Alluxio is running, visit http://RM_hostname:19999 to see the status page of the Alluxio master.

RAPIDS Configuration

There are two ways to leverage Alluxio in RAPIDS.

  1. Explicitly specify the Alluxio path

    This may require user to change code. For example, change

    val df = spark.read.parquet("s3a://<S3_BUCKET>/<S3_DIRECTORY>/foo.parquet")
    

    to

    val df = spark.read.parquet("alluxio://RM_hostname:19998/s3/foo.parquet")
    
  2. Transparently replace in RAPIDS

    RAPIDS has added a configuration spark.rapids.alluxio.pathsToReplace which can allow RAPIDS to replace the input file paths to the Alluxio paths transparently at runtime. So there is no code change for users.

    Eg, at startup

    --conf spark.rapids.alluxio.pathsToReplace="s3://foo->alluxio://RM_hostname:19998/foo,gs://bar->alluxio://RM_hostname:19998/bar"
    

    This configuration allows RAPIDS to replace any file paths prefixed s3://foo with alluxio://RM_hostname:19998/foo and gs://bar with alluxio://RM_hostname:19998/bar.

    Note, one side affect of using Alluxio in this way results in the sql function input_file_name printing the alluxio:// path rather than the original path. Below is an example of using input_file_name.

    spark.read.parquet(data_path)
      .filter(f.col('a') > 0)
      .selectExpr('a', 'input_file_name()', 'input_file_block_start()', 'input_file_block_length()')
    
  3. Submit an application

    Spark driver and tasks will parse alluxio:// schema and access Alluxio cluster using alluxio-${LATEST}-client.jar.

    The Alluxio client jar must be in the classpath of all Spark drivers and executors in order for Spark applications to access Alluxio.

    We can specify it in the configuration of spark.driver.extraClassPath and spark.executor.extraClassPath, but the alluxio client jar should be present on the Yarn nodes.

    The other simplest way is copy alluxio-${LATEST}-client.jar into spark jars directory.

    cp ${ALLUXIO_HOME}/client/alluxio-${LATEST}-client.jar ${SPARK_HOME}/jars/
    
    ${SPARK_HOME}/bin/spark-submit \
       ...                          \
       --conf spark.rapids.alluxio.pathsToReplace="REPLACEMENT_RULES" \
       --conf spark.executor.extraJavaOptions="-Dalluxio.conf.dir=${ALLUXIO_HOME}/conf" \
    

Alluxio Troubleshooting

This section will give some links about how to configure, tune Alluxio and some troubleshooting.